

PLUME ACADEMY - LEARNING OVERVIEW

Year	10		
Course	Design & Technology – Resistant Materials		
Specification Number/Exam Board	8552 AQA		
End of course assessment and	50% NEA		
weightings	50% Exam		

Prior Learning

The subject builds on your child's Key Stage 3 experience in Resistant Materials by Learners would have covered a range of skills during KS3 exploring a range of skills such as Researching, Planning, Designing, Manufacturing and Evaluative skills. These skills would have resulted in the production of a finished product.

Curriculum Intent – What are the curriculum aims?

GCSE Design and Technology will prepare students to participate confidently and successfully in an increasingly technological world. Students will gain awareness and learn from wider influences on Design and Technology including historical, social, cultural, environmental and economic factors. Students will get the opportunity to work creatively when designing and making and apply technical and practical expertise. Design & Technology (Resistant Materials) allows students to study core technical and designing and making principles, including a broad range of design processes, materials techniques and equipment. They will also have the opportunity to study specialist technical principles in greater depth.

	Autumn	1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 10	Wood Workers Box						NEA
	Drawing	Hand 1	Fool Skills	3D Printed	Laser Cut	Cast ID	
	Skills			Hinges	Box Insert	Plate	
	Theory						
	Materials		Timbers, Metals & Polymers	Designer flash cards	Energy, materials, systems and devices	Common Specialist technical principles	

Curriculum Implementation – What will my child be learning?

	1				
Term 1	Half Term 1	Woodworkers Box: Drawing Skills, wood joining methods, hand skills,			
	Practical	understanding of working drawings, manufacturing experience, understanding			
		and knowledge.			
	Half Term 1	Materials: The materials are covered through practical applications and with			
	Theory	reference to the key material category in which they belong. The specific physical			
Theory .		and working properties that best describe each material subcategory are			
		identified and defined with reference to use and knowledge that will underpin			
		practical designing and making activities.			
	Half Term 2	Woodworkers Box: Drawing Skills, wood joining methods, hand skills,			
	Practical	understanding of working drawings, manufacturing experience, understanding			
		and knowledge.			
	Half Term 2	Woods, Metals and Polymers: The processes involved in sourcing, converting and			
	Theory	seasoning timber are covered in the first topic. This also covers sustainability and ethical issues, as well as the comparative advantages of manufactured boards and			
		natural wood. The second lesson focuses on commercial stock forms, fittings and			
		school based processing methods. Commercial processing techniques, surface			
		treatments and finishes are covered in the final topic within the contexts of flat-			
		pack furniture and wooden toys. Quality control techniques using go / no go			
		gauges to check tolerances are also covered			
Term 2	Half Term 3	3D Printed Hinges: Throughout this project, students will explore manipulation of			
	Practical	materials. Students will aim to develop their use of CAD CAM. Students will			
	Tuccical	explore 3D prototyping with the use of fusion 360, slicing software and 3D			
		printing to manufacture a functioning product. It is expected that learners will			
		understand how to prototype a working product to a high level.			
	Half Term 3	Designers flash cards: Students explore the range of 28 designers required to be			
	Theory	studied by the course. Their influence on the design community will be studied as			
	/	will the impact of eight iconic design companies. The students compile a set of			
		revision Key cards as part of their learning.			
	Half Term 4	Laser cut box insert: Throughout this project students will explore manipulation of			
	Practical	materials such as plastics and woods. Students will aim to utilise the use of acrylic			
		as well as CAD CAM skills in the creation of a prototype. different abilities will			
		promote the creation of various different products in response to the context of			
		creating a box insert. It is expected that learners will understand how to prototype a working product to a high level. Modelling forms a fundamental part			
		of this prototyping, these skills are imperative to the iterative design stage that			
		learners will undertake during their NEA.			
	Half Term 4	Energy, materials, systems and devices: Energy generation from finite and non-			
		finite sources is argued in the initial lesson before looking at energy storage in the			
	Theory	second lesson. Developments in modern and smart materials, and their properties			
		are covered in the following two lessons. The unit progresses to cover composite			
		materials and technical textiles including GRP, CRP and Kevlar. Electronic systems			
		and mechanical devices are covered in the final lessons.			
Term 3	Half Term 5	Cast ID Plate: Throughout this project, students will explore the manipulation of			
Territ 5	Practical	metals. Students will investigate different metals along with shaping and forming			
	FIGUIU	methods such as the different casting methods, cutting and drilling. Some of			
		these they will gain practical experience through the realising of their design.			
		Students will be utilise and further embedding the use of CAD CAM developed in			
		their desk tidy project when creating pewter casting mould. This project is a			
		design and make project. This will require the students to research, design,			
		develop designs, realise design and evaluate. It is expected that the students will			
		have a high quality cast pewter prototype.			
	Half Term 5	Common specialist technical principles: This unit focuses on the specialist			
	Theory	technical principles that are common to all material areas in Section 3.2 of the			
		8552 specification. The suite of topics begins by covering the various forces and			
		stresses on materials and objects with detailed exemplification, before looking at			
		how to enhance them to improve their functionality. Ecological issues including			
		product mileage and the six Rs are covered in detail across two lessons. The final lesson covers the effect of scale in production and production methods.			
		resson covers the effect of scale in production and production methods.			
	Half Term 6	NEA – 1 st June			
		AO1 Section A: Identify and investigate design possibilities			
-	•	•			

Curriculum Impact – How will progress be assessed as I learn?

Students will be assessed with termly tests at the end of a unit of theory work. Feedback will be given on the student's work using Close the Gap comments as well as feedback from their tests. Students will prepare themselves for their NEA project which starts in June Students must have sufficient direct supervision for the written element to ensure that the work submitted can be confidently authenticated as their own.

Useful study resources	If a student is really passionate about this subject	As a parent/carer, I can assist my child in this subject by:
Technology Student -	Watch an episode of The Gadget	Topic – Toxicity Of Woods
http://www.technologystude	Show	- <u>www.hse.com</u>
nt.com/ BBC Bitesize - <u>https://www.bbc.co.uk/bitesi</u> <u>ze/subjects</u> Seneca - <u>https://www.senecalearning.</u> <u>com/</u>	https://www.channel5.com/ show/the-gadget-show/ Enter the Design Ventra Competition https://ventura.design museum.org/ Design a display for a notable	Topic – The British Plastic Federation – Plastipedia – <u>www.bpf.com</u> Topic – Institute of Materials, Minerals & Mining – <u>www.iom3.org</u> Topic – How Forces Make
Number Phile - https://www.numberphile.co m/	product or designer of interest. Visit the Olympic Stadium in Stratford and find out about its construction.	Things Stick – <u>www.explainthatstuff.com</u> <u>/adhesives.html</u>
Fusion 360 - <u>https://www.youtube.com/u</u> <u>ser/AutodeskFusion360</u> Google Sketch up – <u>https://www.sketchup.com/pro</u> <u>ducts/sketchup-for-web</u>	Listen to the femmes of STEM podcast.	

Super-Curricular Opportunities – Support and Extending Learning